The Facilitators and Barriers of the Implementation of a Clinical Decision Support System for Breast Cancer Multidisciplinary Team Meetings—An Interview Study

Author:

Kočo Lejla1ORCID,Siebers Carmen C. N.1,Schlooz Margrethe2,Meeuwis Carla3,Oldenburg Hester S. A.4,Prokop Mathias1,Mann Ritse M.14

Affiliation:

1. Department of Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands

2. Department of Surgery, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands

3. Department of Radiology, Rijnstate, Wagnerlaan 55, 6815 AD Arnhem, The Netherlands

4. Department of Surgery, The Netherlands Cancer Institute (Antoni van Leeuwenhoek), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

Abstract

Background: AI-driven clinical decision support systems (CDSSs) hold promise for multidisciplinary team meetings (MDTMs). This study aimed to uncover the hurdles and aids in implementing CDSSs during breast cancer MDTMs. Methods: Twenty-four core team members from three hospitals engaged in semi-structured interviews, revealing a collective interest in experiencing CDSS workflows in clinical practice. All interviews were audio recorded, transcribed verbatim and analyzed anonymously. A standardized approach, ‘the framework method’, was used to create an analytical framework for data analysis, which was performed by two independent researchers. Results: Positive aspects included improved data visualization, time-saving features, automated trial matching, and enhanced documentation transparency. However, challenges emerged, primarily concerning data connectivity, guideline updates, the accuracy of AI-driven suggestions, and the risk of losing human involvement in decision making. Despite the complexities involved in CDSS development and integration, clinicians demonstrated enthusiasm to explore its potential benefits. Conclusions: Acknowledging the multifaceted nature of this challenge, insights into the barriers and facilitators identified in this study offer a potential roadmap for smoother future implementations. Understanding these factors could pave the way for more effective utilization of CDSSs in breast cancer MDTMs, enhancing patient care through informed decision making.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3