Upfront Surgery versus Neoadjuvant Perioperative Chemotherapy for Resectable Colorectal Liver Metastases: A Machine-Learning Decision Tree to Identify the Best Potential Candidates under a Parenchyma-Sparing Policy

Author:

Famularo Simone123ORCID,Milana Flavio12ORCID,Cimino Matteo1ORCID,Franchi Eloisa1ORCID,Giuffrida Mario4ORCID,Costa Guido12,Procopio Fabio12,Donadon Matteo56ORCID,Torzilli Guido12ORCID

Affiliation:

1. Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy

2. Division of Hepatobiliary Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy

3. Surgical Data Science Team, Institut de Recherche sur les Cancers de l’Appareil Digestif (IRCAD), 67000 Strasbourg, France

4. General Surgery Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy

5. Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy

6. Department of General Surgery, University Maggiore Hospital Della Carità, 28100 Novara, Italy

Abstract

Addressing patients to neoadjuvant systemic chemotherapy followed by surgery rather than surgical resection upfront is controversial in the case of resectable colorectal –liver metastases (CLM). The aim of this study was to develop a machine-learning model to identify the best potential candidates for upfront surgery (UPS) versus neoadjuvant perioperative chemotherapy followed by surgery (NEOS). Patients at first liver resection for CLM were consecutively enrolled and collected into two groups, regardless of whether they had UPS or NEOS. An inverse –probability weighting (IPW) was performed to weight baseline differences; survival analyses; and risk predictions were estimated. A mortality risk model was built by Random-Forest (RF) to assess the best –potential treatment (BPT) for each patient. The characteristics of BPT-upfront and BPT-neoadjuvant candidates were automatically identified after developing a classification –and –regression tree (CART). A total of 448 patients were enrolled between 2008 and 2020: 95 UPS and 353 NEOS. After IPW, two balanced pseudo-populations were obtained: UPS = 432 and NEOS = 440. Neoadjuvant therapy did not significantly affect the risk of mortality (HR 1.44, 95% CI: 0.95–2.17, p = 0.07). A mortality prediction model was fitted by RF. The BPT was NEOS for 364 patients and UPS for 84. At CART, planning R1vasc surgery was the main factor determining the best candidates for NEOS and UPS, followed by primitive tumor localization, number of metastases, sex, and pre-operative CEA. Based on these results, a decision three was developed. The proposed treatment algorithm allows for better allocation according to the patient’s tailored risk of mortality.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3