Inhibition of Checkpoint Kinase 1 (CHK1) Upregulates Interferon Regulatory Factor 1 (IRF1) to Promote Apoptosis and Activate Anti-Tumor Immunity via MICA in Hepatocellular Carcinoma (HCC)

Author:

Li Xicai1,Huang Jingquan1,Wu Qiulin1,Du Qiang2,Wang Yingyu1,Huang Yubin1,Cai Xiaoyong1,Geller David A.2,Yan Yihe1ORCID

Affiliation:

1. Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China

2. Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA

Abstract

Background: CHK1 is considered a key cell cycle checkpoint kinase in DNA damage response (DDR) pathway to communicate with several signaling pathways involved in the tumor microenvironment (TME) in numerous cancers. However, the mechanism of CHK1 signaling regulating TME in hepatocellular carcinoma (HCC) remains unclear. Methods: CHK1 expression in HCC tissue was determined by IHC staining assay. DNA damage and apoptosis in HCC cells induced by cisplatin or CHK1 inhibition were detected by WB and flow cytometry. The interaction of CHK1 and IRF1 was analyzed by single-cell RNA-sequence, WB, and immunoprecipitation assay. The mechanism of IRF1 regulating MICA was investigated by ChIP-qPCR. Results: CHK1 expression is upregulated in human HCC tumors compared to the background liver. High CHK1 mRNA level predicts advanced tumor stage and worse prognosis. Cisplatin and CHK1 inhibition augment cellular DNA damage and apoptosis. Overexpressed CHK1 suppresses IRF1 expression through proteolysis. Furthermore, single-cell RNA-sequence analyses confirmed that MICA expression positively correlated with IRF1 in HCC cells. Immunoprecipitation assay showed the binding between CHK1 and IRF1. Cisplatin and CHK1 inhibition upregulate MICA expression through IRF1-mediated transcriptional effects. A novel specific cis-acting IRF response element was identified at -1756 bp in the MICA promoter region that bound IRF1 to induce MICA gene transcription. MICA may increase NK cell and CD8+T cell infiltration in HCC. Conclusions: DNA damage regulates the interaction of CHK1 and IRF1 to activate anti-tumor immunity via the IRF1-MICA pathway in HCC.

Funder

Natural Science Foundation of Guangxi

Scientific Research Project of Guangxi Health Commission

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3