CT-Based Radiomic Analysis for Preoperative Prediction of Tumor Invasiveness in Lung Adenocarcinoma Presenting as Pure Ground-Glass Nodule

Author:

Kao Tzu-Ning,Hsieh Min-Shu,Chen Li-WeiORCID,Yang Chi-Fu Jeffrey,Chuang Ching-Chia,Chiang Xu-Heng,Chen Yi-ChangORCID,Lee Yi-Hsuan,Hsu Hsao-Hsun,Chen Chung-MingORCID,Lin Mong-WeiORCID,Chen Jin-Shing

Abstract

It remains a challenge to preoperatively forecast whether lung pure ground-glass nodules (pGGNs) have invasive components. We aimed to construct a radiomic model using tumor characteristics to predict the histologic subtype associated with pGGNs. We retrospectively reviewed clinicopathologic features of pGGNs resected in 338 patients with lung adenocarcinoma between 2011–2016 at a single institution. A radiomic prediction model based on forward sequential selection and logistic regression was constructed to differentiate adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma. The study cohort included 133 (39.4%), 128 (37.9%), and 77 (22.8%) patients with AIS, MIA, and invasive adenocarcinoma (acinar 55.8%, lepidic 33.8%, papillary 10.4%), respectively. The majority (83.7%) underwent sublobar resection. There were no nodal metastases or tumor recurrence during a mean follow-up period of 78 months. Three radiomic features—cluster shade, homogeneity, and run-length variance—were identified as predictors of histologic subtype and were selected to construct a prediction model to classify the AIS/MIA and invasive adenocarcinoma groups. The model achieved accuracy, sensitivity, specificity, and AUC of 70.6%, 75.0%, 70.0%, and 0.7676, respectively. Applying the developed radiomic feature model to predict the histologic subtypes of pGGNs observed on CT scans can help clinically in the treatment selection process.

Funder

National Taiwan University Hospital

the Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3