The Use of Artificial Intelligence in the Differentiation of Malignant and Benign Lung Nodules on Computed Tomograms Proven by Surgical Pathology

Author:

Wan Yung-Liang,Wu PatriciaORCID,Huang Pei-Ching,Tsay Pei-KweiORCID,Pan Kuang-Tse,Trang NguyenORCID,Chuang Wen-YuORCID,Wu Ching-Yang,Lo ShihChung

Abstract

The purpose of this work was to evaluate the performance of an existing commercially available artificial intelligence (AI) software system in differentiating malignant and benign lung nodules. The AI tool consisted of a vessel-suppression function and a deep-learning-based computer-aided-detection (VS-CAD) analyzer. Fifty patients (32 females, mean age 52 years) with 75 lung nodules (47 malignant and 28 benign) underwent low-dose computed tomography (LDCT) followed by surgical excision and the pathological analysis of their 75 nodules within a 3 month time frame. All 50 cases were then processed by the AI software to generate corresponding VS images and CAD outcomes. All 75 pathologically proven lung nodules were well delineated by vessel-suppressed images. Three (6.4%) of the 47 lung cancer cases, and 11 (39.3%) of the 28 benign nodules were ignored and not detected by the AI without showing a CAD analysis summary. The AI system/radiologists produced a sensitivity and specificity (shown in %) of 93.6/89.4 and 39.3/82.1 in distinguishing malignant from benign nodules, respectively. AI sensitivity was higher than that of radiologists, though not statistically significant (p = 0.712). Specificity obtained by the radiologists was significantly higher than that of the VS-CAD AI (p = 0.003). There was no significant difference between the malignant and benign lesions with respect to age, gender, pure ground-glass pattern, the diameter and location of the nodules, or nodules <6 vs. ≥6 mm. However, more part-solid nodules were proven to be malignant than benign (90.9% vs. 9.1%), and more solid nodules were proven to be benign than malignant (86.7% vs. 13.3%) with statistical significance (p = 0.001 and <0.001, respectively). A larger cohort and prospective study are required to validate the AI performance.

Funder

Chang Gung Medical Foundation

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3