Abstract
Aldehyde dehydrogenase 1A3 (ALDH1A3) belongs to an enzymatic superfamily composed by 19 different isoforms, with a scavenger role, involved in the oxidation of a plethora of aldehydes to the respective carboxylic acids, through a NAD+-dependent reaction. Previous clinical studies highlighted the high expression of ALDH1A3 in cancer stem cells (CSCs) correlated to a higher risk of cancer relapses, chemoresistance and a poor clinical outcome. We report on the structural, biochemical, and cellular characterization of NR6, a new selective ALDH1A3 inhibitor derived from an already published ALDH non-selective inhibitor with cytotoxic activity on glioblastoma and colorectal cancer cells. Crystal structure, through X-Ray analysis, showed that NR6 binds a non-conserved tyrosine residue of ALDH1A3 which drives the selectivity towards this isoform, as supported by computational binding simulations. Moreover, NR6 shows anti-metastatic activity in wound healing and invasion assays and induces the downregulation of cancer stem cell markers. Overall, our work confirms the role of ALDH1A3 as an important target in glioblastoma and colorectal cells and propose NR6 as a promising molecule for future preclinical studies.
Funder
Università degli Studi del Piemonte Orientale
Roche Italia
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献