Integrating Ataxia Evaluation into Tumor-Induced Hearing Loss Model to Comprehensively Study NF2-Related Schwannomatosis

Author:

Lu Simeng1,Yin Zhenzhen1,Chen Jie12,Wu Limeng13,Sun Yao14,Gao Xing12,Huang Peigen1ORCID,Jordan Justin5,Plotkin Scott5ORCID,Xu Lei1

Affiliation:

1. Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA

2. Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410008, China

3. Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100073, China

4. Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China

5. Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA

Abstract

NF2-related Schwannomatosis (NF2-SWN) is a disease that needs new solutions. The hallmark of NF2-SWN, a dominantly inherited neoplasia syndrome, is bilateral vestibular schwannomas (VSs), which progressively enlarge, leading to sensorineural hearing loss, tinnitus, facial weakness, and pain that translates to social impairment and clinical depression. Standard treatments for growing VSs include surgery and radiation therapy (RT); however, both carry the risk of further nerve damage that can result in deafness and facial palsy. The resultant suffering and debility, in combination with the paucity of therapeutic options, make the effective treatment of NF2-SWN a major unmet medical need. A better understanding of these mechanisms is essential to developing novel therapeutic targets to control tumor growth and improve patients’ quality of life. Previously, we developed the first orthotopic cerebellopontine angle mouse model of VSs, which faithfully mimics tumor-induced hearing loss. In this model, we observed that mice exhibit symptoms of ataxia and vestibular dysfunction. Therefore, we further developed a panel of five tests suitable for the mouse VS model and investigated how tumor growth and treatment affect gait, coordination, and motor function. Using this panel of ataxia tests, we demonstrated that both ataxia and motor function deteriorated concomitantly with tumor progression. We further demonstrated that (i) treatment with anti-VEGF resulted in tumor size reduction, mitigated ataxia, and improved rotarod performance; (ii) treatment with crizotinib stabilized tumor growth and led to improvements in both ataxia and rotarod performance; and (iii) treatment with losartan did not impact tumor growth nor ameliorate ataxia or motor function. Our studies demonstrated that these methods, paired with hearing tests, enable a comprehensive evaluation of tumor-induced neurological deficits and facilitate the assessment of the effectiveness of novel therapeutics to improve NF2 treatments.

Funder

American Cancer Society Mission Boost Award

NIH

Department of Defense Investigator-Initiated Research Award

Clinical Trial Award

Children’s Tumor Foundation Drug Discovery Initiative Award

Clinical Research Award

Children’s Tumor Foundation Young Investigator Award

ACS Postdoctoral Fellowship

Sundry Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3