Abstract
Cholangiocarcinoma (CCA) is the second most common hepatobiliary cancer, an aggressive malignancy with limited therapeutic options. PARP (poly (ADP-ribose) polymerase) 1 and 2 are important for deoxyribonucleotide acid (DNA) repair and maintenance of genomic stability. PARP inhibitors (PARPi) such as niraparib have been approved for different malignancies with genomic alteration in germline BRCA and DNA damage response (DDR) pathway genes. Genomic alterations were analyzed in DDR genes in CCA samples employing The Cancer Genome Atlas (TCGA) database. Mutations were observed in various DDR genes, and 35.8% cases had alterations in at least one of three genes (ARID1A, BAP1 and ATM), suggesting their susceptibility to PARPi. Niraparib treatment suppressed cancer cell viability and survival, and also caused G2/M cell cycle arrest in patient-derived xenograft cells lines (PDXC) and established CCA cells harboring DDR gene mutations. PARPi treatment also induced apoptosis and caspase3/7 activity in PDXC and CCA cell lines, and substantially reduced expression of BCL2, BCL-XL and MCL1 proteins. Niraparib caused a significant increase in oxidative stress, and induced activation of DNA damage markers, phosphorylation of CHK2 and replication fork stalling. Importantly, niraparib, in combination with gemcitabine, produced sustained and robust inhibition of tumor growth in vivo in a patient-derived xenograft (PDX) model more effectively than either treatment alone. Furthermore, tissue samples from mice treated with niraparib and gemcitabine display significantly lower expression levels of pHH3 and Ki-67, which are a mitotic and proliferative marker, respectively. Taken together, our results indicate niraparib as a novel therapeutic agent alone or in combination with gemcitabine for CCA.
Funder
California Pacific Medical Center Foundation
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献