SHARPIN Enhances Ferroptosis in Synovial Sarcoma Cells via NF-κB- and PRMT5-Mediated PGC1α Reduction

Author:

Tamiya Hironari12,Urushihara Naoko3,Shizuma Kazuko3,Ogawa Hisataka3,Nakai Sho2,Wakamatsu Toru2ORCID,Takenaka Satoshi2ORCID,Kakunaga Shigeki2

Affiliation:

1. Department of Rehabilitation, Osaka International Cancer Institute, Osaka 541-8567, Japan

2. Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka 541-8567, Japan

3. Nitto Joint Research Department for Nucleic Acid Medicine, Research Center, Osaka International Cancer Institute, Osaka 541-8567, Japan

Abstract

Sarcoma is a rare type of cancer for which new therapeutic agents are required. Ferroptosis is a nonapoptotic cell death triggered by iron-mediated lipid peroxidation. We found that TFRC, an iron uptake protein, was expressed at higher levels in sarcoma cell lines than in noncancer and carcinoma cell lines. Glutathione peroxidase 4 (GPX4) protects cells against ferroptosis, and its inhibition using RAS-selective lethal 3 (RSL3) had an antitumor effect that was more pronounced in sarcoma cell lines, particularly synovial sarcoma cells, compared to non-sarcoma cells. Because NF-κB can provoke ferroptosis, we examined the role of SHARPIN, an activator of NF-κB, in sarcoma. We found that SHARPIN expression was significantly associated with reduced survival in cohorts of patients with cancer, including sarcoma. In addition, SHARPIN promoted the sensitivity of sarcoma cells to ferroptosis. Further analyses revealed that the PGC1α/NRF2/SLC7A11 axis and BNIP3L/NIX-mediated mitophagy are regulated through NF-κB and PRMT5 downstream of SHARPIN. Our findings suggest that ferroptosis could have a therapeutic effect in sarcoma, particularly in subpopulations with high TFRC and SHARPIN expression.

Funder

JSPS KAKANHI

Takeda Science Foundation

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3