An Open-Source AI Framework for the Analysis of Single Cells in Whole-Slide Images with a Note on CD276 in Glioblastoma

Author:

Alzoubi Islam,Bao GuoqingORCID,Zhang Rong,Loh Christina,Zheng Yuqi,Cherepanoff Svetlana,Gracie Gary,Lee Maggie,Kuligowski Michael,Alexander Kimberley L.,Buckland Michael E.,Wang Xiuying,Graeber Manuel B.

Abstract

Routine examination of entire histological slides at cellular resolution poses a significant if not insurmountable challenge to human observers. However, high-resolution data such as the cellular distribution of proteins in tissues, e.g., those obtained following immunochemical staining, are highly desirable. Our present study extends the applicability of the PathoFusion framework to the cellular level. We illustrate our approach using the detection of CD276 immunoreactive cells in glioblastoma as an example. Following automatic identification by means of PathoFusion’s bifocal convolutional neural network (BCNN) model, individual cells are automatically profiled and counted. Only discriminable cells selected through data filtering and thresholding were segmented for cell-level analysis. Subsequently, we converted the detection signals into the corresponding heatmaps visualizing the distribution of the detected cells in entire whole-slide images of adjacent H&E-stained sections using the Discrete Wavelet Transform (DWT). Our results demonstrate that PathoFusion is capable of autonomously detecting and counting individual immunochemically labelled cells with a high prediction performance of 0.992 AUC and 97.7% accuracy. The data can be used for whole-slide cross-modality analyses, e.g., relationships between immunochemical signals and anaplastic histological features. PathoFusion has the potential to be applied to additional problems that seek to correlate heterogeneous data streams and to serve as a clinically applicable, weakly supervised system for histological image analyses in (neuro)pathology.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3