Plasma nanoDSF Denaturation Profile at Baseline Is Predictive of Glioblastoma EGFR Status

Author:

Eyraud Rémi1ORCID,Ayache Stéphane2,Tsvetkov Philipp O.34ORCID,Kalidindi Shanmugha Sri1,Baksheeva Viktoriia E.3,Boissonneau Sébastien5,Jiguet-Jiglaire Carine36,Appay Romain36ORCID,Nanni-Metellus Isabelle7,Chinot Olivier38,Devred François34ORCID,Tabouret Emeline38ORCID

Affiliation:

1. Laboratoire Hubert Curien UMR 5516, UJM-Saint-Etienne, University Lyon, CNRS, 42000 Saint Etienne, France

2. LIS, Aix Marseille Univ, CNRS, 13288 Marseille, France

3. Inst Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, CNRS, 13005 Marseille, France

4. Plateforme Interactome Timone, PINT, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, 13005 Marseille, France

5. Department of Neuro-Surgery, Timone Hospital, APHM, 13005 Marseille, France

6. Department of Anatomopathology, Timone Hospital, APHM, 13005 Marseille, France

7. Department of Molecular Oncology, APHM, 13016 Marseille, France

8. Service de Neurooncologie, CHU Timone, APHM, 13005 Marseille, France

Abstract

Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate EGFR alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery.

Funder

Cancéropôle Provence-Alpes-Côte d’Azur

French National Cancer Institute

Provence-Alpes-Côte d’Azur Région

ITMO Cancer of Aviesan, Patient association ARTC Sud

SiRIC CURAMUS

AP-HM Tumor Bank

Excellence Initiative of Aix-Marseille Université—A*Midex, a French “Investissements d’Avenir programme”

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going?;Biochimica et Biophysica Acta (BBA) - Reviews on Cancer;2023-11

2. Tear nanoDSF Denaturation Profile Is Predictive of Glaucoma;International Journal of Molecular Sciences;2023-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3