Predicting Malignant Lymph Nodes Using a Novel Scoring System Based on Multi-Endobronchial Ultrasound Features

Author:

Morishita Momoko,Uchimura KeigoORCID,Furuse Hideaki,Imabayashi TatsuyaORCID,Tsuchida Takaaki,Matsumoto YujiORCID

Abstract

Endobronchial ultrasound (EBUS) features with B-, power/color Doppler, and elastography modes help differentiate between benign and malignant lymph nodes (MLNs) during transbronchial needle aspiration (TBNA); however, only few studies have assessed them simultaneously. We evaluated the diagnostic accuracy of each EBUS feature and aimed to establish a scoring system to predict MLNs. EBUS features of consecutive patients and final diagnosis per lymph node (LN) were examined retrospectively. In total, 594 LNs from 301 patients were analyzed. Univariable analyses revealed that EBUS features, except for round shape, could differentiate MLNs from benign LNs. Multivariable analysis revealed that short axis (>1 cm), heterogeneous echogenicity, absence of central hilar structure, presence of coagulation necrosis sign, and blue-dominant elastographic images were independent predictors of MLNs. At three or more EBUS features predicting MLNs, our scoring system had high sensitivity (77.9%) and specificity (91.8%). The area under the receiver operating curve (AUC) was 0.894 (95% confidence interval (CI): 0.868–0.920), which was higher than that of B-mode features alone (AUC: 0.840 (95% CI: 0.807–0.873)). The novel scoring system could predict MLNs more accurately than B-mode features alone. Multi-EBUS features may increase EBUS-TBNA efficiency for LN evaluation.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3