Characterisation of an Atrx Conditional Knockout Mouse Model: Atrx Loss Causes Endocrine Dysfunction Rather Than Pancreatic Neuroendocrine Tumour

Author:

Gaspar Tiago BordeiraORCID,Macedo SofiaORCID,Sá Ana,Soares Mariana AlvesORCID,Rodrigues Daniela Ferreira,Sousa MafaldaORCID,Mendes NunoORCID,Martins Rui SousaORCID,Cardoso Luís,Borges Inês,Canberk SuleORCID,Gärtner FátimaORCID,Miranda-Alves LeandroORCID,Sobrinho-Simões Manuel,Lopes José ManuelORCID,Soares PaulaORCID,Vinagre JoãoORCID

Abstract

ATRX is a chromatin remodeller that maintains telomere homeostasis. Loss of ATRX is described in approximately 10% of pancreatic neuroendocrine tumours (PanNETs) and associated with poorer prognostic features. Here, we present a genetically engineered mouse model (GEMM) addressing the role of Atrx loss (AtrxKO) in pancreatic β cells, evaluating a large cohort of ageing mice (for up to 24 months (mo.)). Atrx loss did not cause PanNET formation but rather resulted in worsening of ageing-related pancreatic inflammation and endocrine dysfunction in the first year of life. Histopathological evaluation highlighted an exacerbated prevalence and intensity of pancreatic inflammation, ageing features, and hepatic steatosis in AtrxKO mice. Homozygous floxed mice presented hyperglycaemia, increased weights, and glucose intolerance after 6 months, but alterations in insulinaemia were not detected. Floxed individuals presented an improper growth of their pancreatic endocrine fraction that may explain such an endocrine imbalance. A pilot study of BRACO-19 administration to AtrxKO mice resulted in telomere instability, reinforcing the involvement of Atrx in the maintenance of β cell telomere homeostasis. Thereby, a non-obese dysglycaemic GEMM of disrupted Atrx is here presented as potentially useful for metabolic studies and putative candidate for inserting additional tumourigenic genetic events.

Funder

Fundação para a Ciência e Tecnologia

European Union

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3