Application of Deep Learning for Real-Time Ablation Zone Measurement in Ultrasound Imaging

Author:

Zimmermann Corinna1,Michelmann Adrian1ORCID,Daniel Yannick1,Enderle Markus D.1,Salkic Nermin12ORCID,Linzenbold Walter1ORCID

Affiliation:

1. Erbe Elektromedizin GmbH, 72072 Tübingen, Germany

2. Faculty of Medicine, University of Tuzla, 75000 Tuzla, Bosnia and Herzegovina

Abstract

Background: The accurate delineation of ablation zones (AZs) is crucial for assessing radiofrequency ablation (RFA) therapy’s efficacy. Manual measurement, the current standard, is subject to variability and potential inaccuracies. Aim: This study aims to assess the effectiveness of Artificial Intelligence (AI) in automating AZ measurements in ultrasound images and compare its accuracy with manual measurements in ultrasound images. Methods: An in vitro study was conducted using chicken breast and liver samples subjected to bipolar RFA. Ultrasound images were captured every 15 s, with the AI model Mask2Former trained for AZ segmentation. The measurements were compared across all methods, focusing on short-axis (SA) metrics. Results: We performed 308 RFA procedures, generating 7275 ultrasound images across liver and chicken breast tissues. Manual and AI measurement comparisons for ablation zone diameters revealed no significant differences, with correlation coefficients exceeding 0.96 in both tissues (p < 0.001). Bland–Altman plots and a Deming regression analysis demonstrated a very close alignment between AI predictions and manual measurements, with the average difference between the two methods being −0.259 and −0.243 mm, for bovine liver and chicken breast tissue, respectively. Conclusion: The study validates the Mask2Former model as a promising tool for automating AZ measurement in RFA research, offering a significant step towards reducing manual measurement variability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3