Ras Pathway Activation and MEKi Resistance Scores Predict the Efficiency of MEKi and SRCi Combination to Induce Apoptosis in Colorectal Cancer

Author:

Davis Thomas Benjamin,Gupta Shilpa,Yang Mingli,Pflieger Lance,Rajan Malini,Wang Heiman,Thota Ramya,Yeatman Timothy J.,Pledger Warren Jackson

Abstract

Colorectal cancer (CRC) is the second leading cause of cancer death in the United States. The RAS pathway is activated in more than 55% of CRC and has been targeted for therapeutic intervention with MEK inhibitors. Unfortunately, many patients have de novo resistance, or can develop resistance to this new class of drugs. We have hypothesized that much of this resistance may pass through SRC as a common signal transduction node, and that inhibition of SRC may suppress MEK inhibition resistance mechanisms. CRC tumors of the Consensus Molecular Subtype (CMS) 4, enriched in stem cells, are difficult to successfully treat and have been suggested to evade traditional chemotherapy agents through resistance mechanisms. Here, we evaluate targeting two pathways simultaneously to produce an effective treatment by overcoming resistance. We show that combining Trametinib (MEKi) with Dasatinib (SRCi) provides enhanced cell death in 8 of the 16 tested CRC cell lines compared to treatment with either agent alone. To be able to select sensitive cells, we simultaneously evaluated a validated 18-gene RAS pathway activation signature score along with a 13-gene MEKi resistance signature score, which we hypothesize predict tumor sensitivity to this dual targeted therapy. We found the cell lines that were sensitive to the dual treatment were predominantly CMS4 and had both a high 18-gene and a high 13-gene score, suggesting these cell lines had potential for de novo MEKi sensitivity but were subject to the rapid development of MEKi resistance. The 13-gene score is highly correlated to a score for SRC activation, suggesting resistance is dependent on SRC. Our data show that gene expression signature scores for RAS pathway activation and for MEKi resistance may be useful in determining which CRC tumors will respond to the novel drug combination of MEKi and SRCi.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3