Towards Physiologically and Tightly Regulated Vectored Antibody Therapies

Author:

Page Audrey,Fusil Floriane,Cosset François-LoïcORCID

Abstract

Cancers represent highly significant health issues and the options for their treatment are often not efficient to cure the disease. Immunotherapy strategies have been developed to modulate the patient’s immune system in order to eradicate cancerous cells. For instance, passive immunization consists in the administration at high doses of exogenously produced monoclonal antibodies directed either against tumor antigen or against immune checkpoint inhibitors. Its main advantage is that it provides immediate immunity, though during a relatively short period, which consequently requires frequent injections. To circumvent this limitation, several approaches, reviewed here, have emerged to induce in vivo antibody secretion at physiological doses. Gene delivery vectors, such as adenoviral vectors or adeno-associated vectors, have been designed to induce antibody secretion in vivo after in situ cell modification, and have driven significant improvements in several cancer models. However, anti-idiotypic antibodies and escape mutants have been detected, probably because of both the continuous expression of antibodies and their expression by unspecialized cell types. To overcome these hurdles, adoptive transfer of genetically modified B cells that secrete antibodies either constitutively or in a regulated manner have been developed by ex vivo transgene insertion with viral vectors. Recently, with the emergence of gene editing technologies, the endogenous B cell receptor loci of B cells have been modified with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease (Cas-9) system to change their specificity in order to target a given antigen. The expression of the modified BCR gene hence follows the endogenous regulation mechanisms, which may prevent or at least reduce side effects. Although these approaches seem promising for cancer treatments, major questions, such as the persistence and the re-activation potential of these engineered cells, remain to be addressed in clinically relevant animal models before translation to humans.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference108 articles.

1. CONTRIBUTION TO THE KNOWLEDGE OF SARCOMA

2. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases;Coley;Clin. Orthop.,1893

3. Die Aetiologie des Erysipels;Fehleisen,1883

4. New strategies in vaccine design for the induction of CD8 T cell responses using biodegradable iron oxide nanoparticles;Powles;J. Immunol.,2017

5. Vaccine immunology;Siegrist,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3