Identifying Cross-Scale Associations between Radiomic and Pathomic Signatures of Non-Small Cell Lung Cancer Subtypes: Preliminary Results

Author:

Alvarez-Jimenez CharlemsORCID,Sandino Alvaro A.,Prasanna PrateekORCID,Gupta Amit,Viswanath Satish E.ORCID,Romero Eduardo

Abstract

(1) Background: Despite the complementarity between radiology and histopathology, both from a diagnostic and a prognostic perspective, quantitative analyses of these modalities are usually performed in disconnected silos. This work presents initial results for differentiating two major non-small cell lung cancer (NSCLC) subtypes by exploring cross-scale associations between Computed Tomography (CT) images and corresponding digitized pathology images. (2) Methods: The analysis comprised three phases, (i) a multi-resolution cell density quantification to identify discriminant pathomic patterns for differentiating adenocarcinoma (ADC) and squamous cell carcinoma (SCC), (ii) radiomic characterization of CT images by using Haralick descriptors to quantify tumor textural heterogeneity as represented by gray-level co-occurrences to discriminate the two pathological subtypes, and (iii) quantitative correlation analysis between the multi-modal features to identify potential associations between them. This analysis was carried out using two publicly available digitized pathology databases (117 cases from TCGA and 54 cases from CPTAC) and a public radiological collection of CT images (101 cases from NSCLC-R). (3) Results: The top-ranked cell density pathomic features from the histopathology analysis were correlation, contrast, homogeneity, sum of entropy and difference of variance; which yielded a cross-validated AUC of 0.72 ± 0.02 on the training set (CPTAC) and hold-out validation AUC of 0.77 on the testing set (TCGA). Top-ranked co-occurrence radiomic features within NSCLC-R were contrast, correlation and sum of entropy which yielded a cross-validated AUC of 0.72 ± 0.01. Preliminary but significant cross-scale associations were identified between cell density statistics and CT intensity values using matched specimens available in the TCGA cohort, which were used to significantly improve the overall discriminatory performance of radiomic features in differentiating NSCLC subtypes (AUC = 0.78 ± 0.01). (4) Conclusions: Initial results suggest that cross-scale associations may exist between digital pathology and CT imaging which can be used to identify relevant radiomic and histopathology features to accurately distinguish lung adenocarcinomas from squamous cell carcinomas.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3