A Machine Learning Approach Using FDG PET-Based Radiomics for Prediction of Tumor Mutational Burden and Prognosis in Stage IV Colorectal Cancer

Author:

Lee Hyunjong1,Moon Seung Hwan1,Hong Jung Yong2,Lee Jeeyun2,Hyun Seung Hyup1

Affiliation:

1. Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea

2. Division of Hematology/Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea

Abstract

Introduction: We assessed the performance of F-18 fluorodeoxyglucose positron emission tomography (FDG PET)-based radiomics for the prediction of tumor mutational burden (TMB) and prognosis using a machine learning (ML) approach in patients with stage IV colorectal cancer (CRC). Methods: Ninety-one CRC patients who underwent pretreatment FDG PET/computed tomography (CT) and palliative chemotherapy were retrospectively included. PET-based radiomics were extracted from the primary tumor on PET imaging using the software LIFEx. For feature selection, PET-based radiomics associated with TMB were selected by logistic regression analysis. The performances of seven ML algorithms to predict high TMB were compared by the area under the receiver’s operating characteristic curves (AUCs) and validated by five-fold cross-validation. A PET radiomic score was calculated by averaging the z-score of each radiomic feature. The prognostic power of the PET radiomic score was assessed using Cox proportional hazards regression analysis. Results: Ten significant radiomic features associated with TMB were selected: surface-to-volume ratio, total lesion glycolysis, tumor volume, area, compacity, complexity, entropy, correlation, coarseness, and zone size non-uniformity. The k-nearest neighbors model obtained the good performance for prediction of high TMB (AUC: 0.791, accuracy: 0.814, sensitivity: 0.619, specificity: 0.871). On multivariable Cox regression analysis, the PET radiomic score (Hazard ratio = 4.498, 95% confidential interval = 1.024–19.759; p = 0.046) was a significant independent prognostic factor for OS. Conclusions: This study demonstrates that PET-based radiomics are useful image biomarkers for the prediction of TMB status in stage IV CRC. PET radiomic score, which integrates significant radiomic features, has the potential to predict survival in stage IV CRC patients.

Funder

National Research Foundation of Korea

Samsung Medical Center

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference35 articles.

1. Global colorectal cancer burden in 2020 and projections to 2040;Xi;Transl. Oncol.,2021

2. (2022, September 01). NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Available online: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf.

3. Cost-effectiveness of palliative chemotherapy in advanced gastrointestinal cancer;Glimelius;Ann. Oncol.,1995

4. Palliative chemotherapy for advanced colorectal cancer: Systematic review and meta-analysis;Simmonds;BMJ,2000

5. Diagnosis and treatment of metastatic colorectal cancer: A review;Biller;JAMA,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3