Deep Sequencing of Early T Stage Colorectal Cancers Reveals Disruption of Homologous Recombination Repair in Microsatellite Stable Tumours with High Mutational Burdens

Author:

Li Jun,Steffen Pascal,Tse Benita C. Y.,Ahadi Mahsa S.,Gill Anthony J.,Engel Alexander F.ORCID,Molloy Mark P.ORCID

Abstract

Early T stage colorectal cancers (CRC) that invade lymph nodes (Stage IIIA) are rare and greatly under-represented in large-scale genomic mapping projects. We retrieved 10 Stage IIIA CRC cases, matched these to 16 Stage 1 CRC cases (T1 depth without lymph node metastasis) and carried out deep sequencing of 409 genes using the IonTorrent system. Tumour mutational burdens (TMB) ranged from 2.4 to 77.2/Mb sequenced. No stage-related mutational differences were observed, consistent with reanalysis of The Cancer Genome Atlas (TCGA) Stage I and IIIA datasets. We next examined mutational burdens and observed that the top five cancers were microsatellite stable (MSS) genotypes (mean TMB 49.3/Mb), while the other 16 MSS cancers had a mean TMB of 5.9/Mb. To facilitate comparison with TCGA hypermutator CRC, we included four microsatellite instability-high (MSI-H) samples with the high mutation burden MSS cases to form a TMB-High group. Comparison of TMB-High with TMB-Low groups revealed differences in mutational frequency of ATM, ALK, NSD1, UBR5, BCL9, CARD11, KDM5C, MN1, PTPRT and PIK3CA, with ATM and UBR5 validated in reanalysis of TCGA hypermutator Stages I and IIIA samples. Variants in ATM were restricted to the TMB-High group, and in four of five MSS specimens, we observed the co-occurrence of mutations in homologous recombination repair (HRR) genes in either two of ATM, CDK12, PTEN or ATR, with at least one of these being a likely pathogenic truncating mutation. No MSI-H specimens carried nonsense mutations in HRR genes. These findings add to our knowledge of early T stage CRC and highlight a potential therapeutic vulnerability in the HRR pathway of TMB-H MSS CRC.

Funder

Cancer Council NSW

Cancer Institute of New South Wales

Garry Whyte Sea Angel Trust

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3