Reduced DNA Repair Capacity in Prostate Cancer Patients: A Phenotypic Approach Using the CometChip

Author:

Ortiz-Sánchez CarmenORCID,Encarnación-Medina JarlineORCID,Park Jong Y.ORCID,Moreno Natasha,Ruiz-Deya Gilberto,Matta JaimeORCID

Abstract

Prostate cancer (PCa) accounts for 22% of the new cases diagnosed in Hispanic men in the US. Among Hispanics, Puerto Rican (PR) men show the highest PCa-specific mortality. Epidemiological studies using functional assays in lymphocytes have demonstrated that having low DRC is a significant risk factor for cancer development. The aim of this study was to evaluate variations in DRC in PR men with PCa. Lymphocytes were isolated from blood samples from PCa cases (n = 41) and controls (n = 14) recruited at a hospital setting. DRC levels through the nucleotide excision repair (NER) pathway were measured with the CometChip using UVC as a NER inductor. The mean DRC for controls and PCa cases were 20.66% (±7.96) and 8.41 (±4.88), respectively (p < 0.001). The relationship between DRC and tumor aggressiveness was also evaluated. Additional comparisons were performed to evaluate the contributions of age, anthropometric measurements, and prostate-specific antigen levels to the DRC. This is the first study to apply the CometChip in a clinical cancer study. Our results represent an innovative step in the development of a blood-based screening test for PCa based on DRC levels. Our data also suggest that DRC levels may have the potential to discriminate between aggressive and indolent cases.

Funder

National Cancer Institute

United States Department of Defense

Puerto Rico Science and Technology Trust

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Association between DNA repair capacity and body mass index in women;Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis;2023-01

2. Novel In Vivo CometChip Reveals NDMA-Induced DNA Damage and Repair in Multiple Mouse Tissues;International Journal of Molecular Sciences;2022-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3