Metabolic Reprogramming of Ovarian Cancer Spheroids during Adhesion

Author:

Compton Stephanie L. E.,Grieco Joseph P.,Gollamudi BenitaORCID,Bae Eric,Van Mullekom Jennifer H.,Schmelz Eva M.

Abstract

Ovarian cancer remains a deadly disease and its recurrence disease is due in part to the presence of disseminating ovarian cancer aggregates not removed by debulking surgery. During dissemination in a dynamic ascitic environment, the spheroid cells’ metabolism is characterized by low respiration and fragmented mitochondria, a metabolic phenotype that may not support secondary outgrowth after adhesion. Here, we investigated how adhesion affects cellular respiration and substrate utilization of spheroids mimicking early stages of secondary metastasis. Using different glucose and oxygen levels, we investigated cellular metabolism at early time points of adherence (24 h and less) comparing slow and fast-developing disease models. We found that adhesion over time showed changes in cellular energy metabolism and substrate utilization, with a switch in the utilization of mostly glutamine to glucose but no changes in fatty acid oxidation. Interestingly, low glucose levels had less of an impact on cellular metabolism than hypoxia. A resilience to culture conditions and the capacity to utilize a broader spectrum of substrates more efficiently distinguished the highly aggressive cells from the cells representing slow-developing disease, suggesting a flexible metabolism contributes to the stem-like properties. These results indicate that adhesion to secondary sites initiates a metabolic switch in the oxidation of substrates that could support outgrowth and successful metastasis.

Funder

United States Department of Agriculture

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3