Evaluation of In Vitro Phototoxicity of a Minibody-IR700 Conjugate Using Cell Monolayer and Multicellular Tumor Spheroid Models

Author:

Sioud Mouldy,Juzenas PetrasORCID,Zhang QindongORCID,Kleinauskas AndriusORCID,Peng QianORCID

Abstract

Photodynamic therapy (PDT) is a treatment strategy that utilizes photosensitizers (PSs) and light of a specific wavelength to kill cancer cells. However, limited tumor specificity is still a drawback for the clinical application of PDT. To increase the therapeutic efficacy and specificity of PDT, a novel human minibody (MS5) that recognizes a cell surface receptor expressed on various cancer cells was labeled with the hydrophilic phthalocyanine PS IR700 to generate an MS5-IR700 conjugate that is activated by near-infrared (NIR) light. The phototoxicity of the conjugate was mainly tested against the PC3 prostate cancer cell line. The MS5-IR700 conjugate killed PC3 cells after NIR light irradiation as compared to untreated cells or cells treated with IR700 alone. Time-course analysis of cell viability revealed a high percentage of cell death during the first hour in PC3 cells exposed to the MS5-IR700 conjugate and NIR light irradiation. After irradiation, the MS5-IR700 conjugate-treated PC3 cells displayed cellular swelling, round shape, and rupture of the cell and nuclear membranes. In a co-culture model, the MS5-IR700 conjugate killed MS5-positive Ramos lymphoma cells specifically, while leaving MS5-negative cells unaffected. In line with the data obtained with the monolayer cultures, the MS5-IR700 conjugate also killed PC3 cancer cell spheroids. The treatment induced relocation of heat shock protein 70 and calreticulin to the cell surface, implying the induction of immunogenic cell death. Overall, the data suggest that the developed MS5-IR700 conjugate is a promising therapeutic agent that warrants further preclinical studies.

Funder

Kreftforeningen

Regional Health Authority

RADFORSK

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3