Homologous Recombination Deficiency Detection Algorithms: A Systematic Review

Author:

Mark Lasse Ringsted12ORCID,Terp Simone Karlsson12ORCID,Krarup Henrik Bygum123ORCID,Thomassen Mads4,Pedersen Inge Søkilde123ORCID,Bøgsted Martin35

Affiliation:

1. Department of Molecular Diagnostics, Aalborg University Hospital, DK-9000 Aalborg, Denmark

2. Department of Clinical Medicine, Aalborg University, DK-9000 Aalborg, Denmark

3. Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark

4. Department of Clinical Genetics, Odense University Hospital, DK-5000 Odense C, Denmark

5. Center for Clinical Data Science, Department of Clinical Medicine, Aalborg University and Research, Education, and Innovation, Aalborg University Hospital, DK-9000 Aalborg, Denmark

Abstract

Homologous recombination deficiency (HRD) can arise from germline or somatic pathogenic variants as well as other genomic damage and epigenetic alterations in the HR repair pathway. Patients with tumors presenting with an HRD phenotype can show sensitivity to Poly (ADP-ribose) polymerase inhibitors (PARPis). Several promising tests to detect HRD have been developed based on different HRD definitions, biomarkers, and algorithms. However, no consensus on a gold standard HRD test has been established. In this systematic review, a comprehensive list of tests for the detection of HRD was identified and compared regarding HRD definition, biomarkers, and algorithms. PubMed’s Medline and Elsevier’s Embase were systematically searched, resulting in 27 eligible articles meeting the inclusion criteria. The primary challenge when comparing HRD tests lies in the lack of a consensus definition of HRD, as the HRD definition influences the proportion of samples being classified as HRD and impacts the classification performance. This systematic review provides an overview of available HRD tests that can inspire other researchers in searching for a gold standard HRD definition and highlights the importance of the factors that should be considered when choosing an HRD definition and tests for future planning of clinical trials and studies.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3