A Radiomics-Based Classifier for the Progression of Oropharyngeal Cancer Treated with Definitive Radiotherapy

Author:

Garcia Darwin A.12ORCID,Jeans Elizabeth B.1,Morris Lindsay K.1,Shiraishi Satomi1,Laughlin Brady S.3ORCID,Rong Yi3,Rwigema Jean-Claude M.3,Foote Robert L.1ORCID,Herman Michael G.1,Qian Jing1

Affiliation:

1. Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA

2. Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA

3. Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA

Abstract

In this study, we investigated whether radiomics features from pre-treatment positron emission tomography (PET) images could be used to predict disease progression in patients with HPV-positive oropharyngeal cancer treated with definitive proton or x-ray radiotherapy. Machine learning models were built using a dataset from Mayo Clinic, Rochester, Minnesota (n = 72) and tested on a dataset from Mayo Clinic, Phoenix, Arizona (n = 22). A total of 71 clinical and radiomics features were considered. The Mann–Whitney U test was used to identify the top 2 clinical and top 20 radiomics features that were significantly different between progression and progression-free patients. Two dimensionality reduction methods were used to define two feature sets (manually filtered or machine-driven). A forward feature selection scheme was conducted on each feature set to build models of increased complexity (number of input features from 1 to 6) and evaluate model robustness and overfitting. The machine-driven features had superior performance and were less prone to overfitting compared to the manually filtered features. The four-variable Gaussian Naïve Bayes model using the ‘Radiation Type’ clinical feature and three machine-driven features achieved a training accuracy of 79% and testing accuracy of 77%. These results demonstrate that radiomics features can provide risk stratification beyond HPV-status to formulate individualized treatment and follow-up strategies.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3