Dual-Target CAR-Ts with On- and Off-Tumour Activity May Override Immune Suppression in Solid Cancers: A Mathematical Proof of Concept

Author:

León-Triana OdelaisyORCID,Pérez-Martínez AntonioORCID,Ramírez-Orellana ManuelORCID,Pérez-García Víctor M.ORCID

Abstract

Chimeric antigen receptor (CAR)-T cell-based therapies have achieved substantial success against B-cell malignancies, which has led to a growing scientific and clinical interest in extending their use to solid cancers. However, results for solid tumours have been limited up to now, in part due to the immunosuppressive tumour microenvironment, which is able to inactivate CAR-T cell clones. In this paper we put forward a mathematical model describing the competition of CAR-T and tumour cells, taking into account their immunosuppressive capacity. Using the mathematical model, we show that the use of large numbers of CAR-T cells targetting the solid tumour antigens could overcome the immunosuppressive potential of cancer. To achieve such high levels of CAR-T cells we propose, and study computationally, the manufacture and injection of CAR-T cells targetting two antigens: CD19 and a tumour-associated antigen. We study in silico the resulting dynamics of the disease after the injection of this product and find that the expansion of the CAR-T cell population in the blood and lymphopoietic organs could lead to the massive production of an army of CAR-T cells targetting the solid tumour, and potentially overcoming its immune suppression capabilities. This strategy could benefit from the combination with PD-1 inhibitors and low tumour loads. Our computational results provide theoretical support for the treatment of different types of solid tumours using T cells engineered with combination treatments of dual CARs with on- and off-tumour activity and anti-PD-1 drugs after completion of classical cytoreductive treatments.

Funder

Ministerio de Ciencia e Innovación

James S. McDonnell Foundation

Junta de Comunidades de Castilla-La Mancha

Universidad de Castilla-La Mancha

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3