Abstract
The incidence of papillary thyroid carcinoma (PTC) has been increasing worldwide. PTC is the most common type of differentiated thyroid cancer and usually shows good prognosis. However, some PTC is driven to advanced stage by epithelial-mesenchymal transition (EMT)-mediated drug resistance, which is particularly noticeable in pediatric patients. There are limited options for systemic treatment, necessitating development of new clinical approaches. Here, we aimed to clarify genetic differences due to age of patients with PTC, and thereby aid in developing novel therapeutics. Patients with biochemically and histologically confirmed PTC were included in this study. PTC cells were acquired from young and older patients showing drug resistance, and were compared via microarray analysis. Cellular proliferation and other properties were determined after treatments with lenvatinib and sorafenib. In vivo, tumor volume and other properties were examined using a mouse xenograft model. Lenvatinib-treated group showed obvious suppression of markers of anti-apoptosis, EMT, and the FGFR signaling pathway, compared with control and Sorafenib-treated group. In the xenograft models, lenvatinib treatment induced significant tumor shrinkage and blocked the proto-oncogene Bcl-2 (B cell lymphoma/leukemia gene-2) and FGFR signaling pathway, along with reduced levels of EMT markers, compared with control and Sorafenib-treated group. Our findings clarify the age-dependent characteristics of pediatric PTC, giving insights into the relationship between young age and poor prognosis. Furthermore, it provides a basis for developing novel therapeutics tailored to the age at diagnosis.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献