Abstract
To support the implementation of individualized disease management, we aimed to develop machine learning models predicting platinum sensitivity in patients with high-grade serous ovarian carcinoma (HGSOC). We reviewed the medical records of 1002 eligible patients. Patients’ clinicopathologic characteristics, surgical findings, details of chemotherapy, treatment response, and survival outcomes were collected. Using the stepwise selection method, based on the area under the receiver operating characteristic curve (AUC) values, six variables associated with platinum sensitivity were selected: age, initial serum CA-125 levels, neoadjuvant chemotherapy, pelvic lymph node status, involvement of pelvic tissue other than the uterus and tubes, and involvement of the small bowel and mesentery. Based on these variables, predictive models were constructed using four machine learning algorithms, logistic regression (LR), random forest, support vector machine, and deep neural network; the model performance was evaluated with the five-fold cross-validation method. The LR-based model performed best at identifying platinum-resistant cases with an AUC of 0.741. Adding the FIGO stage and residual tumor size after debulking surgery did not improve model performance. Based on the six-variable LR model, we also developed a web-based nomogram. The presented models may be useful in clinical practice and research.
Funder
Korea Health Industry Development Institute
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献