Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is one of the most abundant, long non-coding RNAs (lncRNAs) in normal tissues. This lncRNA is highly conserved among mammalian species, and based on in vitro results, has been reported to regulate alternative pre-mRNA splicing and gene expression. However, Malat1 knockout mice develop and grow normally, and do not show alterations in alternative splicing. While MALAT1 was originally described as a prognostic marker of lung cancer metastasis, emerging evidence has linked this lncRNA to other cancers, such as breast cancer, prostate cancer, pancreatic cancer, glioma, and leukemia. The role described for MALAT1 is dependent on the cancer types and the experimental model systems. Notably, different or opposite phenotypes resulting from different strategies for inactivating MALAT1 have been observed, which led to distinct models for MALAT1′s functions and mechanisms of action in cancer and metastasis. In this review, we reflect on different experimental strategies used to study MALAT1′s functions, and discuss the current mechanistic models of this highly abundant and conserved lncRNA.
Funder
National Institutes of Health
Cited by
222 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献