Exosome-Transmitted tRF-16-K8J7K1B Promotes Tamoxifen Resistance by Reducing Drug-Induced Cell Apoptosis in Breast Cancer

Author:

Sun Chunxiao12,Huang Xiang1ORCID,Li Jun1,Fu Ziyi1,Hua Yijia12,Zeng Tianyu12,He Yaozhou12,Duan Ningjun1,Yang Fan1,Liang Yan1ORCID,Wu Hao1,Li Wei13,Zhang Yuchen24,Yin Yongmei15ORCID

Affiliation:

1. Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

2. The First Clinical College, Nanjing Medical University, Nanjing 210029, China

3. Department of Oncology, Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, China

4. Department of Radiation Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China

5. Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China

Abstract

Tamoxifen resistance remains a challenge in hormone receptor-positive (HR+) breast cancer. Recent evidence suggests that transfer ribonucleic acid (tRNA)-derived fragments play pivotal roles in the occurrence and development of various tumors. However, the relationship between tRNA-derived fragments and tamoxifen resistance remains unclear. In this study, we found that the expression of tRF-16-K8J7K1B was upregulated in tamoxifen-resistant cells in comparison with tamoxifen-sensitive cells. Higher levels of tRF-16-K8J7K1B were associated with shorter disease-free survival in HR+ breast cancer. Overexpression of tRF-16-K8J7K1B promotes tamoxifen resistance. Moreover, extracellular tRF-16-K8J7K1B could be packaged into exosomes and could disseminate tamoxifen resistance to recipient cells. Mechanistically, exosomal tRF-16-K8J7K1B downregulates the expression of apoptosis-related proteins, such as caspase 3 and poly (ADP-ribose) polymerase, by targeting tumor necrosis factor-related apoptosis-inducing ligand in receptor cells, thereby reducing drug-induced cell apoptosis. Therapeutically, the inhibition of exosomal tRF-16-K8J7K1B increases the sensitivity of breast cancer cells to tamoxifen in vivo. These data demonstrate that exosomal tRF-16-K8J7K1B may be a novel therapeutic target to overcome tamoxifen resistance in HR+ breast cancer.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3