Heavy Ion-Responsive lncRNA EBLN3P Functions in the Radiosensitization of Non-Small Cell Lung Cancer Cells Mediated by TNPO1

Author:

Tang Haoyi,Huang Hao,Guo Zi,Huang Haitong,Niu Zihe,Ji Yi,Zhang Yuyang,Bian Huahui,Hu WentaoORCID

Abstract

In recent decades, the rapid development of radiotherapy has dramatically increased the cure rate of malignant tumors. Heavy-ion radiotherapy, which is characterized by the “Bragg Peak” because of its excellent physical properties, induces extensive unrepairable DNA damage in tumor tissues, while normal tissues in the path of ion beams suffer less damage. However, there are few prognostic molecular biomarkers that can be used to assess the efficacy of heavy ion radiotherapy. In this study, we focus on non-small cell lung cancer (NSCLC) radiotherapy and use RNA sequencing and bioinformatic analysis to investigate the gene expression profiles of A549 cells exposed to X-ray or carbon ion irradiation to screen the key genes involved in the stronger tumor-killing effect induced by carbon ions. The potential ceRNA network was predicted and verified by polymerase chain amplification, western blotting analysis, colony formation assay, and apoptosis assay. The results of the experiments indicated that lncRNA EBLN3P plays a critical role in inhibiting carbon ion-induced cell proliferation and inducing apoptosis of NSCLC cells. These functions were achieved by the EBLN3P/miR-144-3p/TNPO1 (transportin-1) ceRNA network. In summary, the lncRNA EBLN3P functions as a ceRNA to mediate lung cancer inhibition induced by carbon ion irradiation by sponging miR-144-3p to regulate TNPO1 expression, indicating that EBLN3P may be a promising target for increasing the treatment efficacy of conventional radiotherapy for NSCLC.

Funder

National Natural Science Foundation of China

Innovation and Entrepreneurship Training Program for College Students of Jiangsu Province

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3