EGCG Prevents the Transcriptional Reprogramming of an Inflammatory and Immune-Suppressive Molecular Signature in Macrophage-like Differentiated Human HL60 Promyelocytic Leukemia Cells

Author:

Kassouri Celia,Rodriguez Torres Sahily,Gonzalez Suarez NarjaraORCID,Duhamel StéphanieORCID,Annabi BorhaneORCID

Abstract

Background: The promyelocytic leukemia cell differentiation process enables recapitulation of the polarized M1 or M2 macrophage-like phenotype with inflammatory and immune-suppressive properties. While evidence supports the anti-inflammatory effect of dietary-derived epigallocatechin-3-gallate (EGCG), its impact on the onset of immune phenotype molecular signature remains unclear. Methods: Human HL60 promyelocytic cells grown in suspension were differentiated into CD11bHigh/CD14Low adherent macrophages with phorbol 12-myristate 13-acetate (PMA). Gelatin zymography was used to assess the levels of matrix metalloproteinase (MMP)-9, and total RNA was isolated for RNAseq and RT-qPCR assessment of differentially expressed gene levels involved in inflammation and immunity. Protein lysates were used to assess the phosphorylation status of signaling intermediates involved in macrophage-like cell differentiation. Results: Cell adhesion and induction of MMP-9 were indicative of HL60 cell differentiation into a macrophage-like phenotype. The extracellular signal-regulated kinase (ERK), glycogen synthase kinase (GSK)-3, p90 ribosomal S6 kinases (RSK), and cAMP-response-element-binding protein (CREB) were all phosphorylated, and EGCG reduced such phosphorylation status. Increases in inflammation and immunity genes included, among others, CCL22, CSF1, CSF2, IL1B, and TNF, which inductions were prevented by EGCG. This was corroborated by unbiased transcriptomic analysis which further highlighted the capacity of EGCG to downregulate the hematopoietic stem cell regulator CBFA2T3. Conclusion: EGCG inhibits inflammatory signaling crosstalk and prevents the onset of an immune phenotype in macrophage-like differentiated cells.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Marketing,Organizational Behavior and Human Resource Management,Strategy and Management,Drug Discovery,Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3