Model-Informed Radiopharmaceutical Therapy Optimization: A Study on the Impact of PBPK Model Parameters on Physical, Biological, and Statistical Measures in 177Lu-PSMA Therapy

Author:

Abdollahi Hamid12ORCID,Fele-Paranj Ali23,Rahmim Arman124ORCID

Affiliation:

1. Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada

2. Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada

3. Department of Mathematics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada

4. Department of Physics & Astronomy, University of British Columbia, Vancouver, BC V5Z 1M9, Canada

Abstract

Purpose: To investigate the impact of physiologically based pharmacokinetic (PBPK) parameters on physical, biological, and statistical measures in lutetium-177-labeled radiopharmaceutical therapies (RPTs) targeting the prostate-specific membrane antigen (PSMA). Methods: Using a clinically validated PBPK model, realistic time–activity curves (TACs) for tumors, salivary glands, and kidneys were generated based on various model parameters. These TACs were used to calculate the area-under-the-TAC (AUC), dose, biologically effective dose (BED), and figure-of-merit BED (fBED). The effects of these parameters on radiobiological, pharmacokinetic, time, and statistical features were assessed. Results: Manipulating PBPK parameters significantly influenced AUC, dose, BED, and fBED outcomes across four different BED models. Higher association rates increased AUC, dose, and BED values for tumors, with minimal impact on non-target organs. Increased internalization rates reduced AUC and dose for tumors and kidneys. Higher serum protein-binding rates decreased AUC and dose for all tissues. Elevated tumor receptor density and ligand amounts enhanced uptake and effectiveness in tumors. Larger tumor volumes required dosimetry adjustments to maintain efficacy. Setting the tumor release rate to zero intensified the impact of association and internalization rates, enhancing tumor targeting while minimizing the effects on salivary glands and kidneys. Conclusions: Optimizing PBPK parameters can enhance the efficacy of lutetium-177-labeled RPTs targeting PSMA, providing insights for personalized and effective treatment regimens to minimize toxicity and improve therapeutic outcomes.

Funder

Canadian Institutes of Health Research (CIHR) Project

Networking Health Ltd.

Mitacs Elevate

the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3