Quantitative Synthetic Magnetic Resonance Imaging for Brain Metastases: A Feasibility Study

Author:

Konar Amaresha Shridhar,Shah Akash Deelip,Paudyal Ramesh,Fung Maggie,Banerjee Suchandrima,Dave Abhay,Hatzoglou Vaios,Shukla-Dave Amita

Abstract

The present preliminary study aims to characterize brain metastases (BM) using T1 and T2 maps generated from newer, rapid, synthetic MRI (MAGnetic resonance image Compilation; MAGiC) in a clinical setting. We acquired synthetic MRI data from 11 BM patients on a 3T scanner. A multiple-dynamic multiple-echo (MDME) sequence was used for data acquisition and synthetic image reconstruction, including post-processing. MDME is a multi-contrast sequence that enables absolute quantification of physical tissue properties, including T1 and T2, independent of the scanner settings. In total, 82 regions of interest (ROIs) were analyzed, which were obtained from both normal-appearing brain tissue and BM lesions. The mean values obtained from the 48 normal-appearing brain tissue regions and 34 ROIs of BM lesions (T1 and T2) were analyzed using standard statistical methods. The mean T1 and T2 values were 1143 ms and 78 ms, respectively, for normal-appearing gray matter, 701 ms and 64 ms for white matter, and 4206 ms and 390 ms for cerebrospinal fluid. For untreated BMs, the mean T1 and T2 values were 1868 ms and 100 ms, respectively, and 2211 ms and 114 ms for the treated group. The quantitative T1 and T2 values generated from synthetic MRI can characterize BM and normal-appearing brain tissues.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3