CT Image-Based Biopsy to Aid Prediction of HOPX Expression Status and Prognosis for Non-Small Cell Lung Cancer Patients

Author:

Jin Yu1,Arimura Hidetaka2,Cui YunHao1,Kodama Takumi1,Mizuno Shinichi3,Ansai Satoshi4

Affiliation:

1. Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan

2. Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan

3. Division of Medical Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan

4. Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto 606-8520, Japan

Abstract

This study aimed to elucidate a computed tomography (CT) image-based biopsy with a radiogenomic signature to predict homeodomain-only protein homeobox (HOPX) gene expression status and prognosis in patients with non-small cell lung cancer (NSCLC). Patients were labeled as HOPX-negative or positive based on HOPX expression and were separated into training (n = 92) and testing (n = 24) datasets. In correlation analysis between genes and image features extracted by Pyradiomics for 116 patients, eight significant features associated with HOPX expression were selected as radiogenomic signature candidates from the 1218 image features. The final signature was constructed from eight candidates using the least absolute shrinkage and selection operator. An imaging biopsy model with radiogenomic signature was built by a stacking ensemble learning model to predict HOPX expression status and prognosis. The model exhibited predictive power for HOPX expression with an area under the receiver operating characteristic curve of 0.873 and prognostic power in Kaplan–Meier curves (p = 0.0066) in the test dataset. This study’s findings implied that the CT image-based biopsy with a radiogenomic signature could aid physicians in predicting HOPX expression status and prognosis in NSCLC.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3