Nanosecond Pulsed Electric Field Induces an Antitumor Effect in Triple-Negative Breast Cancer via CXCL9 Axis Dependence in Mice

Author:

Xu Zhentian1234,Pan Caixu1234,Chen Luyan5,Qian Junjie1234,Chen Xinhua16,Zhou Lin1234,Zheng Shusen1234ORCID

Affiliation:

1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China

2. NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China

3. Key Laboratory of The Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China

4. Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China

5. Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China

6. Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou 311121, China

Abstract

Triple-negative breast cancer (TNBC) is a refractory tumor, and therapeutic options are very limited. Local ablation has been applied recently. Chemokines play a critical role in the recruitment of immune cells into ablative tumors. Nanosecond pulsed electric field (nsPEF) shows potential anti-tumor efficacy, but the mechanism for maintaining the immune effect is not very clear. Here, we applied nsPEF for treating 4T1 breast cancer cells in vitro. RNA sequencing (RNA-seq) was applied. Anti-CXCL9 was used alone or combined with nsPEF to treat triple-negative breast cancer in mice. We demonstrated that nsPEF effectively induced cell apoptosis and inhibited the growth and metastasis of triple-negative breast cancer. An immune effect, especially chemotaxis, was activated by nsPEF. The number of infiltrated CD8+ T cells was increased significantly. We found that the inhibition of residual breast cancer growth by nsPEF was dependent on the CXCL9 axis. In conclusion, our work demonstrated that nsPEF effectively ablated the tumor, aroused an immune response, and inhibited residual breast cancer growth via CXCL9 axis dependence in mice.

Funder

National S&T Major Project

Innovative Research Groups of NSFC

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3