Glioblastomas within the Subventricular Zone Are Region-Specific Enriched for Mesenchymal Transition Markers: An Intratumoral Gene Expression Analysis

Author:

Dalemans Diana J. Z.,Berendsen Sharon,Draaisma Kaspar,Robe Pierre A.ORCID,Snijders Tom J.ORCID

Abstract

Background: Involvement of the subventricular zone (SVZ) in glioblastoma is associated with poor prognosis and is associated with specific tumor-biological characteristics. The SVZ microenvironment can influence gene expression in glioblastoma cells in preclinical models. We aimed to investigate whether the SVZ microenvironment has any influence on intratumoral gene expression patterns in glioblastoma patients. Methods: The publicly available Ivy Glioblastoma database contains clinical, radiological and whole exome sequencing data from multiple regions from resected glioblastomas. SVZ involvement of the various tissue samples was evaluated on MRI scans. In tumors that contacted the SVZ, we performed gene expression analyses and gene set enrichment analyses to compare gene (set) expression in tumor regions within the SVZ to tumor regions outside the SVZ. We also compared these samples to glioblastomas that did not contact the SVZ. Results: Within glioblastomas that contacted the SVZ, tissue samples within the SVZ showed enrichment of gene sets involved in (epithelial-)mesenchymal transition, NF-κB and STAT3 signaling, angiogenesis and hypoxia, compared to the samples outside of the SVZ region from the same tumors (p < 0.05, FDR < 0.25). Comparison of glioblastoma samples within the SVZ region to samples from tumors that did not contact the SVZ yielded similar results. In contrast, we observed no differences when comparing the samples outside of the SVZ from SVZ-contacting glioblastomas with samples from glioblastomas that did not contact the SVZ at all. Conclusion: Glioblastoma samples in the SVZ region are enriched for increased (epithelial-)mesenchymal transition and angiogenesis/hypoxia signaling, possibly mediated by the SVZ microenvironment.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3