APESTNet with Mask R-CNN for Liver Tumor Segmentation and Classification

Author:

Balasubramanian Prabhu KavinORCID,Lai Wen-ChengORCID,Seng Gan HongORCID,C KavithaORCID,Selvaraj JeevaORCID

Abstract

Diagnosis and treatment of hepatocellular carcinoma or metastases rely heavily on accurate segmentation and classification of liver tumours. However, due to the liver tumor’s hazy borders and wide range of possible shapes, sizes, and positions, accurate and automatic tumour segmentation and classification remains a difficult challenge. With the advancement of computing, new models in artificial intelligence have evolved. Following its success in Natural language processing (NLP), the transformer paradigm has been adopted by the computer vision (CV) community of the NLP. While there are already accepted approaches to classifying the liver, especially in clinical settings, there is room for advancement in terms of their precision. This paper makes an effort to apply a novel model for segmenting and classifying liver tumours built on deep learning. In order to accomplish this, the created model follows a three-stage procedure consisting of (a) pre-processing, (b) liver segmentation, and (c) classification. In the first phase, the collected Computed Tomography (CT) images undergo three stages of pre-processing, including contrast improvement via histogram equalization and noise reduction via the median filter. Next, an enhanced mask region-based convolutional neural networks (Mask R-CNN) model is used to separate the liver from the CT abdominal image. To prevent overfitting, the segmented picture is fed onto an Enhanced Swin Transformer Network with Adversarial Propagation (APESTNet). The experimental results prove the superior performance of the proposed perfect on a wide variety of CT images, as well as its efficiency and low sensitivity to noise.

Funder

National Yunlin University of Science and Technology, Douliu

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3