Algorithm-Based Risk Identification in Patients with Breast Cancer-Related Lymphedema: A Cross-Sectional Study

Author:

Nascimben MauroORCID,Lippi LorenzoORCID,de Sire AlessandroORCID,Invernizzi MarcoORCID,Rimondini LiaORCID

Abstract

Background: Breast cancer-related lymphedema (BCRL) could be one consequence of breast cancer (BC). Although several risk factors have been identified, a predictive algorithm still needs to be made available to determine the patient’s risk from an ensemble of clinical variables. Therefore, this study aimed to characterize the risk of BCRL by investigating the characteristics of autogenerated clusters of patients. Methods: The dataset under analysis was a multi-centric data collection of twenty-three clinical features from patients undergoing axillary dissection for BC and presenting BCRL or not. The patients’ variables were initially analyzed separately in two low-dimensional embeddings. Afterward, the two models were merged in a bi-dimensional prognostic map, with patients categorized into three clusters using a Gaussian mixture model. Results: The prognostic map represented the medical records of 294 women (mean age: 59.823±12.879 years) grouped into three clusters with a different proportion of subjects affected by BCRL (probability that a patient with BCRL belonged to Cluster A: 5.71%; Cluster B: 71.42%; Cluster C: 22.86%). The investigation evaluated intra- and inter-cluster factors and identified a subset of clinical variables meaningful in determining cluster membership and significantly associated with BCRL biological hazard. Conclusions: The results of this study provide potential insight for precise risk assessment of patients affected by BCRL, with implications in prevention strategies, for instance, focusing the resources on identifying patients at higher risk.

Funder

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3