Exploring Selenoprotein P in Liver Cancer: Advanced Statistical Analysis and Machine Learning Approaches

Author:

Razaghi Ali1ORCID,Björnstedt Mikael1ORCID

Affiliation:

1. Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden

Abstract

Selenoprotein P (SELENOP) acts as a crucial mediator, distributing selenium from the liver to other tissues within the body. Despite its established role in selenium metabolism, the specific functions of SELENOP in the development of liver cancer remain enigmatic. This study aims to unravel SELENOP’s associations in hepatocellular carcinoma (HCC) by scrutinizing its expression in correlation with disease characteristics and investigating links to hormonal and lipid/triglyceride metabolism biomarkers as well as its potential as a prognosticator for overall survival and predictor of hypoxia. SELENOP mRNA expression was analyzed in 372 HCC patients sourced from The Cancer Genome Atlas (TCGA), utilizing statistical methodologies in R programming and machine learning techniques in Python. SELENOP expression significantly varied across HCC grades (p < 0.000001) and among racial groups (p = 0.0246), with lower levels in higher grades and Asian individuals, respectively. Gender significantly influenced SELENOP expression (p < 0.000001), with females showing lower altered expression compared to males. Notably, the Spearman correlation revealed strong positive connections of SELENOP with hormonal markers (AR, ESR1, THRB) and key lipid/triglyceride metabolism markers (PPARA, APOC3, APOA5). Regarding prognosis, SELENOP showed a significant association with overall survival (p = 0.0142) but explained only a limited proportion of variability (~10%). Machine learning suggested its potential as a predictive biomarker for hypoxia, explaining approximately 18.89% of the variance in hypoxia scores. Future directions include validating SELENOP’s prognostic and diagnostic value in serum for personalized HCC treatment. Large-scale prospective studies correlating serum SELENOP levels with patient outcomes are essential, along with integrating them with clinical parameters for enhanced prognostic accuracy and tailored therapeutic strategies.

Funder

Cancerfonden

Cancer- och Allergifonden

Radiumhemmets forskningsfonder

CIMED

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3