Mechanistic Modelling of Slow and Fast NHEJ DNA Repair Pathways Following Radiation for G0/G1 Normal Tissue Cells

Author:

Qi Yaping,Warmenhoven John William,Henthorn Nicholas Thomas,Ingram Samuel PeterORCID,Xu Xie George,Kirkby Karen Joy,Merchant Michael John

Abstract

Mechanistic in silico models can provide insight into biological mechanisms and highlight uncertainties for experimental investigation. Radiation-induced double-strand breaks (DSBs) are known to be toxic lesions if not repaired correctly. Non-homologous end joining (NHEJ) is the major DSB-repair pathway available throughout the cell cycle and, recently, has been hypothesised to consist of a fast and slow component in G0/G1. The slow component has been shown to be resection-dependent, requiring the nuclease Artemis to function. However, the pathway is not yet fully understood. This study compares two hypothesised models, simulating the action of individual repair proteins on DSB ends in a step-by-step manner, enabling the modelling of both wild-type and protein-deficient cell systems. Performance is benchmarked against experimental data from 21 cell lines and 18 radiation qualities. A model where resection-dependent and independent pathways are entirely separated can only reproduce experimental repair kinetics with additional restraints on end motion and protein recruitment. However, a model where the pathways are entwined was found to effectively fit without needing additional mechanisms. It has been shown that DaMaRiS is a useful tool when analysing the connections between resection-dependent and independent NHEJ repair pathways and robustly matches with experimental results from several sources.

Funder

European Union’s Horizon 2020 Research and Innovation program

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3