HOXA11-AS1 Promotes PD-L1-Mediated Immune Escape and Metastasis of Hypopharyngeal Carcinoma by Facilitating PTBP1 and FOSL1 Association

Author:

Zhou Zheng,Liu Qian,Zhang Gehou,Mohammed Diab,Amadou Sani,Tan Guolin,Zhang XiaoweiORCID

Abstract

Background: The metastatic characteristics of hypopharyngeal squamous cell carcinoma (HSCC) lead to many diagnostic and therapeutic challenges, while functional long non-coding RNAs (lncRNAs) can provide effective strategies for its diagnosis and treatment. Methods: RT-qPCR, Western blot, immunohistochemistry, and an immunofluorescence assay were used to detect the related gene expression. Flow cytometry was used to measure the percentage of CD8+ and CD4+ T cells. CCK-8 and transwell assays were performed to analyze the role of HOXA11-AS1. The targeted relationship of the FOSL1/PD-L1 promoter was measured by ChIP and dual-luciferase reporter assays. RNA pulldown and RIP assays were used to measure the interaction between HOXA11-AS1, FOSL1, and PTBP1. A tumor xenograft study was used to analyze HOXA11-AS1 function in vivo. Results: HOXA11-AS1, PD-L1, and FOSL1 were upregulated in HSCC, and HOXA11-AS1 positively correlated with PD-L1. HOXA11-AS1 knockdown upregulated CD8+ T cells through an increase in IFN-γ concentration while decreasing the proliferation, migration, and invasion of HSCC cells. FOSL1 bound the PD-L1 promoter, increasing gene expression. HOXA11-AS1 enhanced the stability of FOSL1 mRNA by binding to PTBP1. HOXA11-AS1 or PTBP1 overexpression increased FOSL1 and PD-L1 expression. PD-L1 knockdown arrested the inhibiting function of HOXA11-AS1 overexpression on CD8+ T cell content. HOXA11-AS1 knockdown inhibited immune escape and metastasis through PD-L1 regulation by downregulating FOSL1 in vivo. Conclusion: HOXA11-AS1 promoted PD-L1 expression by upregulating FOSL1 levels through PTBP1, thereby facilitating immune escape, proliferation, and metastasis of HSCC cells.

Funder

Hunan Youth Talents Project

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3