An Interpretable Radiomics Model Based on Two-Dimensional Shear Wave Elastography for Predicting Symptomatic Post-Hepatectomy Liver Failure in Patients with Hepatocellular Carcinoma

Author:

Zhong Xian12,Salahuddin Zohaib2,Chen Yi23,Woodruff Henry C.24ORCID,Long Haiyi1,Peng Jianyun1,Xie Xiaoyan1ORCID,Lin Manxia1,Lambin Philippe24ORCID

Affiliation:

1. Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China

2. The D-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6220 MD Maastricht, The Netherlands

3. Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China

4. Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands

Abstract

Objective: The aim of this study was to develop and validate an interpretable radiomics model based on two-dimensional shear wave elastography (2D-SWE) for symptomatic post-hepatectomy liver failure (PHLF) prediction in patients undergoing liver resection for hepatocellular carcinoma (HCC). Methods: A total of 345 consecutive patients were enrolled. A five-fold cross-validation was performed during training, and the models were evaluated in the independent test cohort. A multi-patch radiomics model was established based on the 2D-SWE images for predicting symptomatic PHLF. Clinical features were incorporated into the models to train the clinical–radiomics model. The radiomics model and the clinical–radiomics model were compared with the clinical model comprising clinical variables and other clinical predictive indices, including the model for end-stage liver disease (MELD) score and albumin–bilirubin (ALBI) score. Shapley Additive exPlanations (SHAP) was used for post hoc interpretability of the radiomics model. Results: The clinical–radiomics model achieved an AUC of 0.867 (95% CI 0.787–0.947) in the five-fold cross-validation, and this score was higher than that of the clinical model (AUC: 0.809; 95% CI: 0.715–0.902) and the radiomics model (AUC: 0.746; 95% CI: 0.681–0.811). The clinical–radiomics model showed an AUC of 0.822 in the test cohort, higher than that of the clinical model (AUC: 0.684, p = 0.007), radiomics model (AUC: 0.784, p = 0.415), MELD score (AUC: 0.529, p < 0.001), and ALBI score (AUC: 0.644, p = 0.016). The SHAP analysis showed that the first-order radiomics features, including first-order maximum 64 × 64, first-order 90th percentile 64 × 64, and first-order 10th percentile 32 × 32, were the most important features for PHLF prediction. Conclusion: An interpretable clinical–radiomics model based on 2D-SWE and clinical variables can help in predicting symptomatic PHLF in HCC.

Funder

Major Research plan of the National Natural Science Foundation of China

National Natural Youth Science Foundation of China

European Union’s Horizon research and innovation programme

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3