Abstract
Protein structural alterations, including misfolding and aggregation, are a hallmark of several diseases, including cancer. However, the possible clinical application of protein conformational analysis using infrared spectroscopy to detect cancer-associated structural changes in proteins has not been established yet. The present study investigates the applicability of Fourier transform infrared spectroscopy in distinguishing the sera of healthy individuals and breast cancer patients. The cancer-associated alterations in the protein structure were analyzed by fitting the amide I (1600–1700 cm−1) band of experimental curves, as well as by comparing the ratio of the absorbance values at the amide II and amide III bands, assigning those as the infrared spectral signatures. The snapshot of the breast cancer-associated alteration in circulating DNA and RNA was also evaluated by extending the spectral fitting protocol to the complex region of carbohydrates and nucleic acids, 1140–1000 cm−1. The sensitivity and specificity of these signatures, representing the ratio of the α-helix and β-pleated sheet in proteins, were both 90%. Likewise, the ratio of amides II and amide III (I1556/I1295) had a sensitivity and specificity of 100% and 80%, respectively. Thus, infrared spectroscopy can serve as a powerful tool to understand the protein structural alterations besides distinguishing breast cancer and healthy serum samples.
Funder
Air Force Office of Scientific Research
Reference86 articles.
1. World cancer report 2014. Public Health 2019;Stewart,2019
2. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015;McGuire,2016
3. Breast Cancer Facts & Figures 2017–2018;Society,2017
4. Performance of First Mammography Examination in Women Younger Than 40 Years
5. Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised screening trial
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献