Affiliation:
1. Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
2. Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
Abstract
Hepatocellular carcinoma (HCC) is a rapidly rising global health concern, ranking as the third-leading cause of cancer-related mortality. Despite medical advancements, the five-year survival rate remains a dismal 18%, with a daunting 70% recurrence rate within a five-year period. Current systematic treatments, including first-line sorafenib, yield an overall response rate (ORR) below 10%. In contrast, immunotherapies have shown promise by improving ORR to approximately 30%. The IMbravel150 clinical trial demonstrates that combining atezolizumab and bevacizumab surpasses sorafenib in terms of median progression-free survival (PFS) and overall survival (OS). However, the therapeutic efficacy for HCC patients remains unsatisfactory, highlighting the urgent need for a comprehensive understanding of antitumor responses and immune evasion mechanisms in HCC. In this context, understanding the immune landscape of HCC is of paramount importance. Tumor-infiltrating T cells, including cytotoxic T cells, regulatory T cells, and natural killer T cells, are key components in the antitumor immune response. This review aims to shed light on their intricate interactions within the immunosuppressive tumor microenvironment and explores potential strategies for revitalizing dysfunctional T cells. Additionally, current immune checkpoint inhibitor (ICI)-based trials, ICI-based combination therapies, and CAR-T- or TCR-T-cell therapies for HCC are summarized, which might further improve OS and transform the management of HCC in the future.
Funder
National Natural Science Foundation of China
Central high-level hospital clinical research special key cultivation project
2021 Liver Cancer Diagnosis and Treatment Exchange Fund of Hubei Chen Xiaoping Science and Technology Development Foundation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献