Abstract
HIV-1 Tat Interactive Protein 2 (HTATIP2) is a tumor suppressor, of which reduced or absent expression is associated with increased susceptibility to tumorigenesis and enhanced tumor invasion and metastasis. However, whether the absent expression of HTATIP2 is a tumor-promoting factor that acts through improving tumor adaptation to hypoxia is unclear. Here, we established a stable HTATIP2-knockdown A549 human lung adenocarcinoma cell line (A549shHTATIP2) using lentiviral-delivered HTATIP2-targeting short hairpin RNA (shRNA), employed a double subcutaneous xenograft model and incorporated photoacoustic imaging and metabolomics approaches to elucidate the impact of the absent HTATIP2 expression on tumor response to hypoxic stress. Results from the in vivo study showed that A549shHTATIP2 tumors exhibited accelerated growth but decreased intratumoral oxygenation and angiogenesis and reduced sensitivity to sorafenib treatment as compared with their parental counterparts. Moreover, results of the immunoblot and real-time PCR analyses revealed that the HIF2α protein and mRNA levels in vehicle-treated A549shHTATIP2 tumors were significantly increased (p < 0.01 compared with the parental control tumors). Despite the strong HIF2α-c-Myc protein interaction indicated by our co-immunoprecipitation data, the increase in the c-Myc protein and mRNA levels was not significant in the A549shHTATIP2 tumors. Nonetheless, MCL-1 and β-catenin protein levels in A549shHTATIP2 tumors were significantly increased (p < 0.05 compared with the parental control tumors), suggesting an enhanced β-catenin/c-Myc/MCL-1 pathway in the absence of HTATIP2 expression. The finding of significantly decreased E-cadherin (p < 0.01 compared with vehicle-treated A549shHTATIP2 tumors) and increased vimentin (p < 0.05 compared with sorafenib-treated A549 tumors) protein levels in A549shHTATIP2 tumors implicates that the absence of HTATIP2 expression increases the susceptibility of A549 tumors to sorafenib-activated epithelial-mesenchymal transition (EMT) process. Comparison of the metabolomic profiles between A549 and A549shHTATIP2 tumors demonstrated that the absence of HTATIP2 expression resulted in increased tumor metabolic plasticity that enabled tumor cells to exploit alternative metabolic pathways for survival and proliferation rather than relying on glutamine and fatty acids as a carbon source to replenish TCA cycle intermediates. Our data suggest a mechanism by which the absent HTATIP2 expression modulates tumor adaptation to hypoxia and promotes an aggressive tumor phenotype by enhancing the HIF2α-regulated β-catenin/c-Myc/MCL-1 signaling, increasing the susceptibility of tumors to sorafenib treatment-activated EMT process, and improving tumor metabolic plasticity.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献