In Vivo Models for Prostate Cancer Research

Author:

Adamiecki RobertORCID,Hryniewicz-Jankowska Anita,Ortiz Maria A.ORCID,Li XiangORCID,Porter-Hansen Baylee A.,Nsouli Imad,Bratslavsky GennadyORCID,Kotula LeszekORCID

Abstract

In 2022, prostate cancer (PCa) is estimated to be the most commonly diagnosed cancer in men in the United States—almost 270,000 American men are estimated to be diagnosed with PCa in 2022. This review compares and contrasts in vivo models of PCa with regards to the altered genes, signaling pathways, and stages of tumor progression associated with each model. The main type of model included in this review are genetically engineered mouse models, which include conditional and constitutive knockout model. 2D cell lines, 3D organoids and spheroids, xenografts and allografts, and patient derived models are also included. The major applications, advantages and disadvantages, and ease of use and cost are unique to each type of model, but they all make it easier to translate the tumor progression that is seen in the mouse prostate to the human prostate. Although both human and mouse prostates are androgen-dependent, the fact that the native, genetically unaltered prostate in mice cannot give rise to carcinoma is an especially critical component of PCa models. Thanks to the similarities between the mouse and human genome, our knowledge of PCa has been expanded, and will continue to do so, through models of PCa.

Funder

National Cancer Institute

Upstate Medical University Pilot grant (Hendricks Fund) to LK

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference142 articles.

1. Cancer statistics, 2022;Siegel;CA Cancer J. Clin.,2022

2. The tumor-producing capacity of strain L mouse cells after 10 years in vitro;Sanford;Cancer Res.,1956

3. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix;Scherer;J. Exp. Med.,1953

4. Gowder, S.J.T. (2017). New Insights into Cell Culture Technology, IntechOpen.

5. LNCaP model of human prostatic carcinoma;Horoszewicz;Cancer Res.,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3