Abstract
Neurofibromatosis type (NF1) is a syndrome characterized by varied symptoms, ranging from mild to more aggressive phenotypes. The variation is not explained only by genetic and epigenetic changes in the NF1 gene and the concept of phenotype-modifier genes in extensively discussed in an attempt to explain this variability. Many datasets and tools are already available to explore the relationship between genetic variation and disease, including systems biology and expression data. To suggest potential NF1 modifier genes, we selected proteins related to NF1 phenotype and NF1 gene ontologies. Protein–protein interaction (PPI) networks were assembled, and network statistics were obtained by using forward and reverse genetics strategies. We also evaluated the heterogeneous networks comprising the phenotype ontologies selected, gene expression data, and the PPI network. Finally, the hypothesized phenotype-modifier genes were verified by a random-walk mathematical model. The network statistics analyses combined with the forward and reverse genetics strategies, and the assembly of heterogeneous networks, resulted in ten potential phenotype-modifier genes: AKT1, BRAF, EGFR, LIMK1, PAK1, PTEN, RAF1, SDC2, SMARCA4, and VCP. Mathematical models using the random-walk approach suggested SDC2 and VCP as the main candidate genes for phenotype-modifiers.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献