RAD52 Functions in Homologous Recombination and Its Importance on Genomic Integrity Maintenance and Cancer Therapy

Author:

Nogueira Augusto,Fernandes MaraORCID,Catarino Raquel,Medeiros RuiORCID

Abstract

Genomes are continually subjected to DNA damage whether they are induced from intrinsic physiological processes or extrinsic agents. Double-stranded breaks (DSBs) are the most injurious type of DNA damage, being induced by ionizing radiation (IR) and cytotoxic agents used in cancer treatment. The failure to repair DSBs can result in aberrant chromosomal abnormalities which lead to cancer development. An intricate network of DNA damage signaling pathways is usually activated to eliminate these damages and to restore genomic stability. These signaling pathways include the activation of cell cycle checkpoints, DNA repair mechanisms, and apoptosis induction, also known as DNA damage response (DDR)-mechanisms. Remarkably, the homologous recombination (HR) is the major DSBs repairing pathway, in which RAD52 gene has a crucial repairing role by promoting the annealing of complementary single-stranded DNA and by stimulating RAD51 recombinase activity. Evidence suggests that variations in RAD52 expression can influence HR activity and, subsequently, influence the predisposition and treatment efficacy of cancer. In this review, we present several reports in which the down or upregulation of RAD52 seems to be associated with different carcinogenic processes. In addition, we discuss RAD52 inhibition in DDR-defective cancers as a possible target to improve cancer therapy efficacy.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3