Urinary Eubacterium sp. CAG:581 Promotes Non-Muscle Invasive Bladder Cancer (NMIBC) Development through the ECM1/MMP9 Pathway

Author:

Zhang Yuhang12ORCID,Wang Wenyu3,Zhou Hang4,Cui Yimin12ORCID

Affiliation:

1. Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China

2. Department of Pharmacy, Peking University First Hospital, Beijing 100034, China

3. Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100054, China

4. Department of Urology Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 100054, China

Abstract

Background: Increasing evidence points to the urinary microbiota as a possible key susceptibility factor for early-stage bladder cancer (BCa) progression. However, the interpretation of its underlying mechanism is often insufficient, given that various environmental conditions have affected the composition of urinary microbiota. Herein, we sought to rule out confounding factors and clarify how urinary Eubacterium sp. CAG:581 promoted non-muscle invasive bladder cancer (NMIBC) development. Methods: Differentially abundant urinary microbiota of 51 NMIBC patients and 47 healthy controls (as Cohort 1) were first determined by metagenomics analysis. Then, we modeled the coculture of NMIBC organoids with candidate urinary Eubacterium sp. CAG:581 in anaerobic conditions and explored differentially expressed genes of these NMIBC tissues by RNA-Seq. Furthermore, we dissected the mechanisms involved into Eubacterium sp. CAG:581 by inducing extracellular matrix protein 1 (ECM1) and matrix metalloproteinase 9 (MMP9) upregulation. Finally, we used multivariate Cox modeling to investigate the clinical relevance of urinary Eubacterium sp. CAG:581 16S ribosomal RNA (16SrRNA) levels to the prognosis of 406 NMIBC patients (as Cohort 2). Results: Eubacterium sp. CAG:581 infection accelerated the proliferation of NMIBC organoids (p < 0.01); ECM1 and MMP9 were the most upregulated genes induced by the increased colony forming units (CFU) gradient of Eubacterium sp. CAG:581 infection via phosphorylating ERK1/2 in NMIBC organoids of Cohort 1. Excluding the favorable impact of potential contributing factors, the ROC curve of Cohort 2 manifested its 3-year AUC value as 0.79 and the cut-off point of Eubacterium sp. CAG:581 16SrRNA as 10.3 (delta CT value). Conclusion: Our evidence suggests that urinary Eubacterium sp. CAG:581 promoted NMIBC progression through the ECM1/MMP9 pathway, which may serve as the promising noninvasive diagnostic biomarker for NMIBC.

Funder

National Natural Science Foundation of China

National High Level Hospital Clinical Research Funding

Research Seed Fund of Peking University First Hospital

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3