Deep Learning for Fully Automatic Tumor Segmentation on Serially Acquired Dynamic Contrast-Enhanced MRI Images of Triple-Negative Breast Cancer

Author:

Xu Zhan1ORCID,Rauch David E.1,Mohamed Rania M.2ORCID,Pashapoor Sanaz2,Zhou Zijian1,Panthi Bikash1,Son Jong Bum1,Hwang Ken-Pin1ORCID,Musall Benjamin C.1,Adrada Beatriz E.2,Candelaria Rosalind P.2,Leung Jessica W. T.2,Le-Petross Huong T. C.2,Lane Deanna L.2,Perez Frances2,White Jason3,Clayborn Alyson3,Reed Brandy4,Chen Huiqin5,Sun Jia5,Wei Peng5ORCID,Thompson Alastair6,Korkut Anil7,Huo Lei8,Hunt Kelly K.9,Litton Jennifer K.3,Valero Vicente3,Tripathy Debu3ORCID,Yang Wei2,Yam Clinton3,Ma Jingfei1

Affiliation:

1. Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

2. Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

3. Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

4. Department of Clinical Research Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

5. Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

6. Section of Breast Surgery, Baylor College of Medicine, Houston, TX 77030, USA

7. Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

8. Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

9. Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

Abstract

Accurate tumor segmentation is required for quantitative image analyses, which are increasingly used for evaluation of tumors. We developed a fully automated and high-performance segmentation model of triple-negative breast cancer using a self-configurable deep learning framework and a large set of dynamic contrast-enhanced MRI images acquired serially over the patients’ treatment course. Among all models, the top-performing one that was trained with the images across different time points of a treatment course yielded a Dice similarity coefficient of 93% and a sensitivity of 96% on baseline images. The top-performing model also produced accurate tumor size measurements, which is valuable for practical clinical applications.

Funder

NIH/NCI

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3